247 research outputs found

    New Geologic Map of the Scandia Region of Mars

    Get PDF
    We have begun work on a sophisti-cated digital geologic map of the Scandia region (Fig. 1) at 1:3,000,000 scale based on post-Viking image and to-pographic datasets. Through application of GIS tools, we will produce a map product that will consist of (1) a printed photogeologic map displaying geologic units and relevant modificational landforms produced by tectonism, erosion, and collapse/mass wasting; (2) a landform geoda-tabase including sublayers of key landform types, attributed with direct measurements of their planform and to-pography using Mars Orbiter Laser Altimeter (MOLA) altimetry data and High-Resolution Stereo Camera (HRSC) digital elevation models (DEMs) and various image datasets; and (3) a series of digital, reconstructed paleostratigraphic and paleotopographic maps showing the inferred distribution and topographic form of materi-als and features during past age

    The influence of barefoot and barefoot inspired footwear on the kinetics and kinematics of running in comparison to conventional running shoes.

    Get PDF
    Barefoot running has experienced a resurgence in footwear biomechanics literature, based on the supposition that it serves to reduce the occurrence of overuse injuries in comparison to conventional shoe models. This consensus has lead footwear manufacturers to develop shoes which aim to mimic the mechanics of barefoot locomotion. This study compared the impact kinetics and 3-D joint angular kinematics observed whilst running: barefoot, in conventional cushioned running shoes and in shoes designed to integrate the perceived benefits of barefoot locomotion. The aim of the current investigation was therefore to determine whether differences in impact kinetics exist between the footwear conditions and whether shoes which aim to simulate barefoot movement patterns can closely mimic the 3-D kinematics of barefoot running. Twelve participants ran at 4.0 m.s-1±5% in each footwear condition. Angular joint kinematics from the hip, knee and ankle in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. In addition simultaneous tibial acceleration and ground reaction forces were obtained. Impact parameters and joint kinematics were subsequently compared using repeated measures ANOVAs. The kinematic analysis indicates that in comparison to the conventional and barefoot inspired shoes that running barefoot was associated significantly greater plantar-flexion at footstrike and range of motion to peak dorsiflexion. Furthermore, the kinetic analysis revealed that compared to the conventional footwear impact parameters were significantly greater in the barefoot condition. Therefore this study suggests that barefoot running is associated with impact kinetics linked to an increased risk of overuse injury, when compared to conventional shod running. Furthermore, the mechanics of the shoes which aim to simulate barefoot movement patterns do not appear to closely mimic the kinematics of barefoot locomotion

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Stable spinning optical solitons in three dimensions

    Full text link
    We introduce spatiotemporal spinning solitons (vortex tori) of the three-dimensional nonlinear Schrodinger equation with focusing cubic and defocusing quintic nonlinearities. The first ever found completely stable spatiotemporal vortex solitons are demonstrated. A general conclusion is that stable spinning solitons are possible as a result of competition between focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let

    Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media

    Full text link
    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.Comment: Review article, will be published in Journal of Optics B, special issue on Optical Solitons, 6 figure

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    REVISITING THE APOLLO PHOTOGRAMMETRIC MAPPING SYSTEM

    Get PDF
    The integrated photogrammetric mapping system flown on the last three Apollo lunar missions (AS15, AS16, and AS17) in 1971 and 1972 incorporated a Metric (mapping) Camera, a high-resolution Panoramic Camera, and a star camera and laser altimeter. The U.S. Geological Survey’s Astrogeology Science Center, the Intelligent Robotics Group of the NASA Ames Research Center, and Arizona State University are working together in an ongoing collaboration to achieve the most complete cartographic development of Apollo mapping system data into versatile digital map products. These will enable a variety of scientific/engineering uses of the data including mission planning, geologic mapping, geophysical process modelling, slope dependent correction of spectral data, and change detection. After a brief discussion of the origins of the mapping system, we describe the Metric and Panoramic cameras, processing of the associated image and support data, work to photogrammetrically control the Metric Camera images, and future plans
    • 

    corecore